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Distribution of global, shallow, warm water coral reefs in 2010 

CORAL REEFS

Data: Scripps Oceanographic Institute, NOAA, NASA, UNEP

Value 
• Shoreline protection
• Economic value
• Highest biodiversity
• Medical applications

Pressures 
• Climate Change
• Ocean Acidification
• Pollution, run-off
• Human Impact
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NOVEL INSTRUMENT TECHNOLOGIES

Science Remote Sensing 
Measurements Technologies

Physical oceanography, 
understand shallow 
coastal environment, 
transport, flow and 

storm surge

Bathymetry, sea surface 
temperature, salinity

Biological oceanography, 
determine health, extent 
and coverage of marine 

life

High-resolution, 
multispectral image of 

underwater environment
MiDAR



2D Fluid Lensing Results, Coral Image Test Target, Test Platforms 11, Depth = 4.5m, MSL

Flat Fluid

Raw Distorted Frames

Mean Image (600 frames) 2D Fluid Lensing Integration (90 frames)

No Fluid 2D Fluid Lensing Results
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http://www.nasa.gov/ames/las


ESTO FluidCam 1 (Color) 

FluidCam 1&2 offer more than a 
10x improvement over previous 
Fluid Lensing instruments in 
resolution, data bandwidth, 
spectral range, SNR, and onboard 
compute capability.

Original sensor 2013 FluidCam Color 2016





REMOTE SENSINGMiDAR



MiDAR
Color FluidCam Image NIR FluidCam with 

MiDAR  

Color-mapped UV Image Color-mapped NIR Image 



MACHINE LEARNING WITH FLUIDCAM & MIDAR
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Living 
Structure

Nonliving 
Structure

8% total 
error in 

Morphology 
ID

5% total 
error in 
Percent 

Cover ID vs 
30% in 
literature
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How to use high 
resolution data to 

augment low 
resolution imagery?

?

?

?



Is there a method to autonomously relate these feature spaces?

Rock Branching Mounding Sand

To use high resolution data from UAVs augment low resolution 
datasets captured by higher altitude and satellite platforms.

Goal: 

30 cm 50 cm 2 m1 cm



Leverage airborne data, which offers high resolution imagery of reef systems close to the 
source which gives the best representation of the feature space 

Idea: 

Airborne dataset

Satellite dataset

Machine Learning 
(ML) Training

- Train UAV data against 
reference

- Use ML solution on 
analogous feature spaces 
as produced by satellite 
datasetsReference Dataset

Image Rectification
- Align satellite and airborne 

datasets

Concept: Train UAV dataset against the reference dataset using supervised machine learning. Take this 
classification criteria and apply it to a transformed version of the satellite dataset.

General Approach

Prediction
- Transform satellite dataset 

accordingly 
- Use previous ML classification to 

predict upon satellite datasets
- Look at misclassification and 

accuracy



Image Rectification

• Align images and 
resolutions: 

• Scale Invariant Feature 
Transform (SIFT) 

• Random Sample 
Consensus (RANSAC) 

• Finds the optimal 
homography transform 



Augmented Machine Learning Training
Reference Data PCA + SVM

SVM
• 3rd order polynomial 

SVM fit to xPCA
• Separation into k 

classes via one-
versus-one 
classification

PCA

- Data point in PCA space

- ith principal unit vector

- Data point in original 
space

- Mean of x!

SVM Classification Result

BranchingRock SandMoundingOrganic Inorganic Error



Prediction Methodology
Satellite

Augmentation Algorithm: 

1) Partition image into various sections 

2) Translate, rotate and scale auxiliary 
dataset with reference to original 
SVM solution 

• Translate: Determined by mean of 
classes 

• Rotate: Determined by PCA 
directions 

• Scale: Determined by covariance of 
classes 

3) Predict upon partitioned image 
using previous SVM solution 

• Repeat over all partitions 
• Overlap areas to build Consensus

Airborne PCA Satellite PCA

Transform solution in Airborne feature 
space to apply to Satellite feature space



Prediction Methodology
Translate

Gradient analysis (2 class)

Image Partition

Rotate
Rotate by mapping onto PCA vectors

• Identify regions of 
high gradients

• Perform clustering 
by DBSCAN

• Assign labels on 
adjacent points in 
relation to clustered   

Scaling
Scale by covariance matrix

points  

- Estimated ith 

principal unit vector
- Satellite data in 

original space
- Estimated mean of y!

- Scaled result
- Covariance of x 

(reference data)
- Covariance of y

(satellite data)

Satellite Reference

Cover
Prediction

Morphology
Prediction



Coral Cover
K-means Direct SVM Augmented

Morphology
Direct SVM Augmented

~66% Accuracy ~69% Accuracy ~71% Accuracy ~50% Accuracy ~57% Accuracy 

Reference

BranchingRock SandMoundingOrganic Inorganic ErrorResults: 2-m scale Imagery



Robustness
What if we learn upon an entirely different region?

MAP Estimate

1) Take MAP estimate as reference 
2) Learn upon these data 

3) Predict on original transect

Method 0.3 m 0.5 m 2 m
K-Means 67% 71% 66%

SVM 74% 74% 63%
Previous 

Augmented 84% 79% 71%

Augmented 83% 77% 69%

Coral Cover Prediction Accuracy

Morphology Prediction Accuracy
Method 0.3 m 0.5 m 2 m

SVM 59% 61% 38%
Previous 

Augmented 69% 62% 57%

Augmented 70% 68% 60%



AUGMENTED MACHINE LEARNING TOOLBOXES



CURRENT & FUTURE WORK
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NEMO-NET - NEURAL MULTI-MODAL OBSERVATION & TRAINING NETWORK 
FOR GLOBAL CORAL REEF ASSESSMENT
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labels by maximizing the class probabilities of the unlabeled data pool (Lee, 2013). Other 
approaches include use of standard supervised learning methods such as nonlinear embedding 
(MDS, Isomap) in combination with an optimization routine at each layer of the deep network for 
structure learning on the unlabeled pool (Weston, Ratle, Mobahi, & Collobert, 2012). 
3.) Augmenting labeled data through active learning. Active learning is an area of machine 
learning research that uses an “expert in the loop” to learn iteratively from large data sets that have 
very few annotations or labels available. In our case, the users classifying objects are humans in 
the loop and the active learning strategy algorithm decides which sample from the unlabeled pool 
should be given to the expert for labeling such that the new information obtained is most useful in 
improving the classifier performance on the unlabeled/unseen data. Common strategies include 

 
Figure 6 – Our lab has developed an active learning platform on tablet and virtual reality platforms, where users can view 
3D FluidCam data of coral reefs and provide training data on coral classes including living cover, morphology type, and 
species identification. These data, along with their spatial coordinates, are fed into NeMO-Net, which produces a 
classification map and reef constituent breakdown as well as error analysis based upon training data. This technology has 
already been developed at LAS for visualization and interaction with FluidCam 3D coral reef data and will be expanded to 
NASA CORAL data as well.  
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SHOCK!!!40%
Fluid Lensing Required



Automated Percent Cover ID

Automated Morphology ID

37% 63%

43% 18% 36% 3%

Rock
3.0%

Mounding
36.0%

Branching
18.0%

Sand/Other
43.0%

Automated Reef Morphology ID

Sand/Other Branching Mounding Rock





Results: 0.3-m scale Imagery
Coral Cover

K-means Direct SVM Augmented

Morphology
Direct SVM Augmented

~67% Accuracy ~83% Accuracy ~84% Accuracy ~52% Accuracy ~69% Accuracy 

Reference

BranchingRock SandMoundingOrganic Inorganic Error



Coral Cover
K-means Direct SVM Augmented

Morphology
Direct SVM Augmented

~71% Accuracy ~78% Accuracy ~79% Accuracy ~61% Accuracy ~62% Accuracy 

Reference

Results: 0.5-m scale Imagery BranchingRock SandMoundingOrganic Inorganic Error
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proposed CNN learning module will have access to other useful services such as geolocation, 
layered data, and other classification tools for comparison to our methodology. The Python 
package will also be designed to build upon and integrate with existing libraries for machine 
learning and modern geospatial workflow, such as TensorFlow, Scikit-learn, Rasterio, and 
Geopandas. To increase computational speed, NeMO-Net will take advantage of GPU processing 
on the LAS Laika compute cluster as well as the High-End Computing Capability (HECC) 
Pleiades supercomputing cluster, located at NASA Ames. The active learning application will be 
developed on the game development platform Unity Pro and 3D modeling software Maya LT for 
iOS, with an interim Amazon server for data storage. All implementable software packages will 
be uploaded to the NASA Earth Exchange (NEX) repository, which currently houses many 
existing algorithms and data products related to machine learning and Earth Science. A high-level 
implementation of both software and hardware is shown in Figure 8. For an overview of licensing 
and hardware specifications, refer to Table 2. All final code developed on all platforms as well as 
final deliverables will be made publicly available under the GNU General Public License (GPL).  

 

 
Figure 8 - Software and Hardware implementation for final product. NeMO-Net will be developed as a Python plugin utilizing 
existing open-source packages and libraries interfacing with QGIS. For active learning, a platform primarily targeting the 
scientific community will ingest data that is overly ambiguous or confusing for classification. The actively learned datasets are 
fed back into QGIS for processing and eventually utilized by NeMO-Net to improve accuracy and robustness. Implementation 
of algorithm and software will take place first on the LAS Laika cluster, moving towards GPU and supercomputing capability 
on the NASA HECC Pleiades cluster. 





SCIENCE APPLICATIONSMiDAR


